What is: Adaptive Richard's Curve Weighted Activation?
Source | ARiA: Utilizing Richard's Curve for Controlling the Non-monotonicity of the Activation Function in Deep Neural Nets |
Year | 2000 |
Data Source | CC BY-SA - https://paperswithcode.com |
This work introduces a novel activation unit that can be efficiently employed in deep neural nets (DNNs) and performs significantly better than the traditional Rectified Linear Units (ReLU). The function developed is a two parameter version of the specialized Richard's Curve and we call it Adaptive Richard's Curve weighted Activation (ARiA). This function is non-monotonous, analogous to the newly introduced Swish, however allows a precise control over its non-monotonous convexity by varying the hyper-parameters. We first demonstrate the mathematical significance of the two parameter ARiA followed by its application to benchmark problems such as MNIST, CIFAR-10 and CIFAR-100, where we compare the performance with ReLU and Swish units. Our results illustrate a significantly superior performance on all these datasets, making ARiA a potential replacement for ReLU and other activations in DNNs.