What is: Double DQN?
Source | Deep Reinforcement Learning with Double Q-learning |
Year | 2000 |
Data Source | CC BY-SA - https://paperswithcode.com |
A Double Deep Q-Network, or Double DQN utilises Double Q-learning to reduce overestimation by decomposing the max operation in the target into action selection and action evaluation. We evaluate the greedy policy according to the online network, but we use the target network to estimate its value. The update is the same as for DQN, but replacing the target with:
Compared to the original formulation of Double Q-Learning, in Double DQN the weights of the second network are replaced with the weights of the target network for the evaluation of the current greedy policy.