Viet-Anh on Software Logo

What is: Instance Normalization?

SourceInstance Normalization: The Missing Ingredient for Fast Stylization
Year2000
Data SourceCC BY-SA - https://paperswithcode.com

Instance Normalization (also known as contrast normalization) is a normalization layer where:

ytijk=xtijkμtiσti2+ϵ,μti=1HWl=1Wm=1Hxtilm,σti2=1HWl=1Wm=1H(xtilmμti)2. y_{tijk} = \frac{x_{tijk} - \mu_{ti}}{\sqrt{\sigma_{ti}^2 + \epsilon}}, \quad \mu_{ti} = \frac{1}{HW}\sum_{l=1}^W \sum_{m=1}^H x_{tilm}, \quad \sigma_{ti}^2 = \frac{1}{HW}\sum_{l=1}^W \sum_{m=1}^H (x_{tilm} - \mu_{ti})^2.

This prevents instance-specific mean and covariance shift simplifying the learning process. Intuitively, the normalization process allows to remove instance-specific contrast information from the content image in a task like image stylization, which simplifies generation.