Viet-Anh on Software Logo

What is: Latent Optimisation?

SourceDeep Compressed Sensing
Year2000
Data SourceCC BY-SA - https://paperswithcode.com

Latent Optimisation is a technique used for generative adversarial networks to refine the sample quality of zz. Specifically, it exploits knowledge from the discriminator DD to refine the latent source zz. Intuitively, the gradient _zf(z)=δf(z)δz\nabla\_{z}f\left(z\right) = \delta{f}\left(z\right)\delta{z} points in the direction that better satisfies the discriminator DD, which implies better samples. Therefore, instead of using the randomly sampled zp(z)z \sim p\left(z\right), we uses the optimised latent:

Δz=αδf(z)δz\Delta{z} = \alpha\frac{\delta{f}\left(z\right)}{\delta{z}}

z=z+Δzz' = z + \Delta{z}

Source: LOGAN .