What is: Self-Training with Task Augmentation?
Source | STraTA: Self-Training with Task Augmentation for Better Few-shot Learning |
Year | 2000 |
Data Source | CC BY-SA - https://paperswithcode.com |
STraTA, or Self-Training with Task Augmentation, is a self-training approach that builds on two key ideas for effective leverage of unlabeled data. First, STraTA uses task augmentation, a technique that synthesizes a large amount of data for auxiliary-task fine-tuning from target-task unlabeling texts. Second, STRATA performs self-training by further fine-tuning the strong base model created by task augmentation on a broad distribution of pseudo-labeled data.
In task augmentation, we train an NLI data generation model and use it to synthesize a large amount of in-domain NLI training data for each given target task, which is then used for auxiliary (intermediate) fine-tuning. The self-training algorithm iteratively learns a better model using a concatenation of labeled and pseudo-labeled examples. At each iteration, we always start with the auxiliary-task model produced by task augmentation and train on a broad distribution of pseudo-labeled data.